SCADA SOLITION
SCADA Solutions
Industrial control system (ICS) is a general term that encompasses several types of control systems, including supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), and other smaller control system configurations such as skid-mounted Programmable Logic Controllers
(PLC) often found in the industrial sectors and critical infrastructures. ICSs are typically used in industries such as electrical, water, oil and gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable goods.) These control systems are critical to the operation of the U.S. critical infrastructures that are often highly interconnected and mutually dependent systems. It is important to note that approximately 90 percent of the nation’s critical infrastructures are privately owned and operated. Federal agencies also operate many of the industrial processes mentioned above; other examples include air traffic control and materials handling (e.g., Postal Service mail handling.) This section provides an overview of SCADA, DCS, and PLC systems, including typical architectures and components. Several diagrams are presented to depict the network connections and components typically found on each system to facilitate the understanding of these systems. The diagrams in this section do not address security and the diagrams in this section do not represent a secure architecture.
Overview of SCADA, DCS, and PLCs
SCADA systems are highly distributed systems used to control geographically dispersed assets, often scattered over thousands of square kilometers, where centralized data acquisition and control are critical to system operation. They are used in distribution systems such as water distribution and wastewater collection systems, oil and gas pipelines, electrical power grids, and railway transportation systems. A SCADA control center performs centralized monitoring and control for field sites over long-distance communications networks, including monitoring alarms and processing status data. Based on information received from remote stations, automated or operator-driven supervisory commands can be pushed to remote station control devices, which are often referred to as field devices. Field devices control local operations such as opening and closing valves and breakers, collecting data from sensor systems, and monitoring the local environment for alarm conditions.
DCSs are used to control industrial processes such as electric power generation, oil and gas refineries, water and wastewater treatment, and chemical, food, and automotive production. DCSs are integrated as a control architecture containing a supervisory level of control overseeing multiple, integrated sub-systems that are responsible for controlling the details of a localized process. Product and process control are usually achieved by deploying feed back or feed forward control loops whereby key product and/or process conditions are automatically maintained around a desired set point. To accomplish the desired product and/or process tolerance around a specified set point, specific programmable controllers (PLC) are employed in the field and proportional, integral, and/or differential settings on the PLC are tuned to provide the desired tolerance as well as the rate of self-correction during process upsets. DCSs are used extensively in process-based industries.
PLCs are computer-based solid-state devices that control industrial equipment and processes. While PLCs are control system components used throughout SCADA and DCS systems, they are often the primary components in smaller control system configurations used to provide regulatory control of discrete processes such as automobile assembly lines and power plant soot blower controls. PLCs are used extensively in almost all industrial processes.
Control Components
The following is a list of the major control components of an ICS: Control Server. The control server hosts the DCS or PLC supervisory control software that is designed to communicate with lower-level control devices. The control server accesses subordinate control modules over an ICS network. SCADA Server or Master Terminal Unit (MTU). The SCADA Server is the device that acts as the master in a SCADA system. Remote terminal units and PLC devices (as described below) located at remote field sites usually act as slaves.
Remote Terminal Unit (RTU). The RTU, also called a remote telemetry unit, is special purpose data acquisition and control unit designed to support SCADA remote stations. RTUs are field devices often equipped with wireless radio interfaces to support remote situations where wire-based communications are unavailable. Sometimes PLCs are implemented as field devices to serve as RTUs; in this case, the PLC is often referred to as an RTU. Programmable Logic Controller (PLC). The PLC is a small industrial computer originally designed to perform the logic functions executed by electrical hardware (relays, drum switches, and mechanical timer/counters). PLCs have evolved into controllers with the capability of controlling complex processes, and they are used substantially in SCADA systems and DCSs.
Other controllers used at the field level are process controllers and RTUs; they provide the same control as PLCs but are designed for specific control applications. In SCADA environments, PLCs are often used as field devices because they are more economical, versatile, flexible, and configurable than special-purpose RTUs. Intelligent Electronic Devices (IED). An IED is a “smart” sensor/actuator containing the intelligence required to acquire data, communicate to other devices, and perform local processing and control. An IED could combine an analog input sensor, analog output, low-level control capabilities, a communication system, and program memory in one device. The use of IEDs in SCADA and DCS systems allows for automatic control at the local level.
Human-Machine Interface (HMI). The HMI is software and hardware that allows human operators to monitor the state of a process under control, modify control settings to change the control objective, and manually override automatic control operations in the event of an emergency. The HMI also allows a control engineer or operator to configure set points or control algorithms and parameters in the controller. The HMI also displays process status information, historical information, reports, and other information to operators, administrators, managers, business partners, and other authorized users. The location, platform, and interface may vary a great deal. For example, an HMI could be a dedicated platform in the control center, a laptop on a wireless LAN, or a browser on any system connected to the Internet.
Data Historian. The data historian is a centralized database for logging all process information within an ICS. Information stored in this database can be accessed to support various analyses, from statistical process control to enterprise level planning.
Input/Output (IO) Server. The IO server is a control component responsible for collecting, buffering and providing access to process information from control sub-components such as PLCs, RTUs and IEDs. An IO server can reside on the control server or on a separate computer platform. IO servers are also used for interfacing third-party control components, such as an HMI and a control server.
Network Components
There are different network characteristics for each layer within a control system hierarchy. Network topologies across different ICS implementations vary with modern systems using Internet-based IT and enterprise integration strategies. Control networks have merged with corporate networks to allow engineers to monitor and control systems from outside of the control system network. The connection may also allow enterprise-level decision-makers to obtain access to process data. The following is a list of the major components of an ICS network, regardless of the network topologies in use:
Fieldbus Network. The fieldbus network links sensors and other devices to a PLC or other controller. Use of fieldbus technologies eliminates the need for point-to-point wiring between the controller and each device. The sensors communicate with the fieldbus controller using a specific protocol. The messages sent between the sensors and the controller uniquely identify each of the sensors.
Control Network. The control network connects the supervisory control level to lower-level control modules.
Communications Routers. A router is a communications device that transfers messages between two networks. Common uses for routers include connecting a LAN to a WAN, and connecting MTUs and RTUs to a long-distance network medium for SCADA communication.
Firewall. A firewall protects devices on a network by monitoring and controlling communication packets using predefined filtering policies. Firewalls are also useful in managing ICS network segregation strategies.
Modems. A modem is a device used to convert between serial digital data and a signal suitable for transmission over a telephone line to allow devices to communicate. Modems are often used in SCADA systems to enable long-distance serial communications between MTUs and remote field devices. They are also used in both SCADA systems, DCSs and PLCs for gaining remote access for operational functions such as entering command or modifying parameters, and diagnostic purposes.
Remote Access Points. Remote access points are distinct devices, areas and locations of a control network for remotely configuring control systems and accessing process data. Examples include using a personal digital assistant (PDA) to access data over a LAN through a wireless access point, and using a laptop and modem connection to remotely access an ICS system.
SCADA Systems
SCADA systems are used to control dispersed assets where centralized data acquisition is as important as control . These systems are used in distribution systems such as water distribution and wastewater collection systems, oil and gas pipelines, electrical utility transmission and distribution systems, and rail and other public transportation systems. SCADA systems integrate data acquisition systems with data transmission systems and HMI software to provide a centralized monitoring and control system for numerous process inputs and outputs. SCADA systems are designed to collect field information, transfer it to a central computer facility, and display the information to the operator graphically or textually, thereby allowing the operator to monitor or control an entire system from a central location in real time. Based on the sophistication and setup of the individual system, control of any individual system, operation, or task can be automatic, or it can be performed by operator commands.
SCADA systems consist of both hardware and software. Typical hardware includes an MTU placed at a control center, communications equipment (e.g., radio, telephone line, cable, or satellite), and one or more geographically distributed field sites consisting of either an RTU or a PLC, which controls actuators and/or monitors sensors. The MTU stores and processes the information from RTU inputs and outputs, while the RTU or PLC controls the local process. The communications hardware allows the transfer of information and data back and forth between the MTU and the RTUs or PLCs. The software is programmed to tell the system what and when to monitor, what parameter ranges are acceptable, and what response to initiate when parameters go outside acceptable values. An IED, such as a protective relay, may communicate directly to the SCADA master station, or a local RTU may poll the IEDs to collect the data and pass it to the SCADA master station. IEDs provide a direct interface to control and monitor equipment and sensors. IEDs may be directly polled and controlled by the SCADA master station and in most cases have local programming that allows for the IED to act without direct instructions from the SCADA control center. SCADA systems are usually designed to be fault-tolerant systems with significant redundancy built into the system architecture.